If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+x^2=204
We move all terms to the left:
x^2+x^2-(204)=0
We add all the numbers together, and all the variables
2x^2-204=0
a = 2; b = 0; c = -204;
Δ = b2-4ac
Δ = 02-4·2·(-204)
Δ = 1632
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1632}=\sqrt{16*102}=\sqrt{16}*\sqrt{102}=4\sqrt{102}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{102}}{2*2}=\frac{0-4\sqrt{102}}{4} =-\frac{4\sqrt{102}}{4} =-\sqrt{102} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{102}}{2*2}=\frac{0+4\sqrt{102}}{4} =\frac{4\sqrt{102}}{4} =\sqrt{102} $
| h/15=-19 | | 9^x+3^3x-1=53 | | q+-807=124 | | v-884=-165 | | s+455=932 | | z+354=984 | | 3.5x-7(4-2.5x)=35 | | q+70=343 | | 3p-2(6p-7)=3(p+4)-2 | | h-5=39 | | H(t)=-0.08t•2+4.48 | | m+260=81 | | 6n=213 | | 20=c+3 | | 100=h+74 | | 90+70+x=180 | | H(t)=-0.08t•2+4.47 | | s-249=956 | | 6n+21=234 | | 2x-4=10x-25 | | 2x+28=10x+52 | | v-28=39 | | 47=v+19 | | 5+x(0.25)=2+x(0.35) | | 6x2–29x+20=0 | | -2x+-4x=3x+10 | | 10x=19−9x | | y=7+21-6 | | e=3+0.2/0.4 | | 2x+17=107−8x | | 5x=120−10x | | X2-y2=105 |